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The Hanle effect describes suppression of spin polarization due to precession in a magnetic field. This is a
standard spintronics tool and it gives access to the spin lifetime of samples in which spins are generated
homogeneously. We examine the Hanle effect when spins are generated at a boundary of a diffusive sample by
the extrinsic spin Hall effect. We show that the Hanle curve is spatially dependent and that the “apparent” spin
lifetime, given by its inverse half-width, is shorter near the boundary even if the spin relaxation rate is
homogeneous.
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I. INTRODUCTION

The goal of spintronics is to generate and manipulate spin
populations on time scales limited by the spin lifetime. One
can access the spin population optically, since selection rules
allow optical pumping and detection of spins in materials;1

interesting alternatives are magnetic materials or materials
with spin-orbit interaction, providing access to spins with
standard microelectronic devices.2,3 To characterize a given
sample, it is essential to determine its spin lifetime �s, which
depends on the microscopic properties of the sample. One
can determine �s of a homogeneous sample using the Hanle
effect1 as follows, even if time-resolved measurements are
not available. If there is no spin precession, a spin polariza-
tion simply decays with the spin relaxation rate 1 /�s. How-
ever, if a magnetic field B perpendicular to the spin polariza-
tion axis is applied, there is a competing relaxation
mechanism: Spins will precess in that magnetic field with
Larmor frequency �L�B. If the magnetic field is sufficiently
large, such that the spin can precess many times within its
lifetime, this will randomize the spin and suppress the spin
polarization. This competing spin relaxation mechanism be-
comes effective for �L�1 /�s; thus �s can be extracted by
measuring the inverse width of the so-called Hanle curve
sz��L�.

In recent experiments by Kato et al.,4 a spatially depen-
dent spin polarization sz was induced via the extrinsic spin
Hall effect5–8 and measured via Kerr microscopy. The width
of the Hanle curves sz��L ,r� was described with a spatially
dependent spin lifetime �̃s�r�. Rather strikingly, it was found
that �̃s is several times smaller near the sample edge than
10 �m away from the edge. In this paper, we calculate the
Hanle curves and show that such a suppression of �̃s near the
edge can result from spin diffusion, even if the spin relax-
ation rate �s

−1 is spatially homogeneous.
The physical picture for this spatial dependence of �̃s is as

follows �see Figs. 1�a� and 1�b��. Spins are generated at the
boundary and then diffuse into the bulk of the sample. In a
magnetic field, the spins observed at a small distance x were
�on average� generated a short time ago and did not yet pre-
cess much in the magnetic field. Therefore, they have a
larger sz than one would expect for the homogeneous case
with a bulk generation mechanism �e.g., optical pumping�.
This means that the linewidth as function of B is larger and

the spin lifetime seems smaller. Conversely, the spins ob-
served far from the boundary required a rather long time to
get there and were able to precess longer in the magnetic
field. Therefore, the value of sz is more strongly suppressed
by B, the linewidth becomes narrower, and the spin lifetime
appears longer.

A similar situation is found when the dominating spin
transport mechanism is the drift induced by charge
currents.9–12 During the drift from the injection to the detec-
tion point over a distance r, spins precess during time t
=r /vdr, where vdr is the drift velocity. Because the precession
angle �Lt is the same for each spin �neglecting diffusion�,

FIG. 1. �a� When spins are generated at the boundary and then
diffuse into the sample, spins closer to the boundary had, on aver-
age, less time to precess in the magnetic field B=Bx̂ than those
further away. �b� Therefore, the Hanle curve sz��L�B� close to the
boundary �x=0, solid line� becomes broader, while away from the
boundary �x=4Ls with spin diffusion length Ls, dashed line�, it be-
comes narrower than in the case of homogeneous spin generation
�gray line�. Here, the spin density sz�x ,�L� is given by Eq. �6� for
�s=�xy =�z and qs=0.
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multiple oscillations of sz were observed as function of �L
�Ref. 9� or r.10

II. MODEL

To quantitatively describe the suppression of the apparent
spin lifetime �̃s in a diffusive system, we now analyze the
Hanle curves for such systems. For this, we consider a mag-
netic field B=Bx̂, which induces spin precession of electrons
with Larmor frequency �L=g*�BB /�, with effective g factor
g* and Bohr magneton �B, corresponding to a Zeeman cou-
pling HZ= 1

2g*�BB ·�. We assume a sufficiently small mag-
netic field that orbital effects are not important and that �s

−1 is
independent of B. The equation of motion for the spin den-
sity s, including spin precession, diffusion, and relaxation, is

ṡ = �g*�B/��B � s + D�s − �Js
−1s , �1�

with a spatially independent spin diffusion constant D and a
diagonal spin relaxation tensor �Js

−1 with components
��xy

−1 ,�xy
−1 ,�z

−1�; note that the polarization sx decouples and so
its spin relaxation rate is actually not important here. Also,
we define the geometrical mean of the spin relaxation times
as �s=��xy�z and the spin diffusion length is Ls=�D�s. We
set �xy =	�s and �z=	−1�s with some dimensionless constant
	, e.g., 	=�2 for Dyakonov-Perel spin relaxation and
Rashba coupling.13–16

Next, we assume that spin polarization is generated at a
boundary plane. This is the case for the extrinsic spin Hall
effect,4–8 where a �homogeneous� electrical current induces
spin currents which, in turn, produce spin polarization near
sample edges due to extrinsic spin-orbit interaction. We take
a semi-infinite two- or three-dimensional system with x
0
and an electric field Ey applied along the y direction. The
transverse spin current is jx

z =�SHEy, with spin Hall conduc-
tivity �SH. Microscopically, the spin current relaxes on the
short transport lifetime ��1 /�L; thus, �SH does not depend
on the weak magnetic field. If spin is conserved at the
boundary, there is no spin current perpendicular to the
boundary and the spin Hall current is compensated by spin
diffusion, i.e., jx

z =D �
�xsz at x=0. More generally, we consider

the boundary condition

�

�x
sz =

jx
z

D
+ qssz,

�

�x
sy = qssy , �2�

which allows for spin relaxation at the edge, characterized by
qs, and where we have taken jx

y =0. Note that the spin relax-
ation described by qs occurs on length scales much shorter
than Ls.

17,18

A. Comparison to other systems

For other systems, where spins are generated at a bound-
ary and then precess in a field, Eqs. �1� and �2� also apply
and these systems show the same Hanle curves. D’yakonov
and Perel’19 considered the situation where electron spins
were optically generated using circularly polarized light in a
surface layer thinner than Ls. Assuming that recombination
only takes place in this surface layer, it is taken into account

via qs. Further, the degree of circular polarization of the re-
combination radiation is proportional to sz at x=0, so only
the Hanle curve at the surface is experimentally accessible.
Such measurements were reported by Vekua et al.20 Further-
more, Johnson and Silsbee21 analyzed a system where spins
are injected from a ferromagnet into a paramagnet at x=0. A
second ferromagnet at a distance x is used as a detector,
whose voltage is proportional to the spin polarization sz�x�.
Fabrication of devices with different detector spacings then
provides electrical access to the spatially dependent Hanle
curve.

B. Hanle curves

We now analyze the spin polarization in the stationary
case ṡ=0 by assuming that the spin relaxation rate �Js

−1 is
spatially independent. With the ansatz s=s0eqx, we find the
solutions of Eq. �1� satisfying Re q0, with wave numbers

q0,1 = −��xy + �z � T

2D�xy�z
, �3�

T = ���xy − �z�2 − 4�xy
2 �z

2�L
2 , �4�

and we have defined T for later convenience. From the
boundary conditions �2�, we obtain the position-dependent
Hanle curves

sy�x,B� = jx
z �

i=0,1
eqix

�− 1�i�xy�z�L

DT�qi − qs�
, �5�

sz�x,B� = jx
z �

i=0,1
eqix

T + �− 1�i��xy − �z�
2DT�qi − qs�

. �6�

For �xy =�z=�s, Eq. �6� simplifies considerably; using q0,1Ls

=−�1� i�L�s=−��R� i�I� with �R= �1+�1+�L
2�s

2�1/2 /�2
and �I=�L�s /2�R, we find

sz�d� = −
jx
z��s���R + ��cos �Id + �I sin �Id�

�D���R + ��2 + �I
2�

e−�Rd, �7�

where we have defined the dimensionless distance d=x /Ls
and the dimensionless boundary relaxation �=qsLs �Fig. 2�
In the special case of x=0 and �xy =�z, Eq. �7� agrees with the
expression found when studying Hanle effect on
surfaces,19,20 while for qs=0 and �xy =�z, it agrees with the
result from Ref. 21.

Further, in the absence of the magnetic field, Eq. �6� sim-
plifies to sz=−jx

z��s /De−�	x/Ls / ��	+��. Finally, for qs=0, the
integrated spin density corresponds to the Hanle curve of a
homogeneous system,

	 dxsz�x� = −
jx
z�z

1 + �s
2�L

2 . �8�

C. Apparent spin lifetime

In the experiments of Ref. 4 the apparent spin lifetime
�̃s�x� is extracted by assuming a Lorentzian Hanle curve �Eq.
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�8�� at each position, then �s can be found as the half-width
at half maximum of sz��L�. Correspondingly, we now take
Eq. �6� and solve 1

2sz�x ,�L=0�=sz�x ,�L
HWHM� for the appar-

ent spin lifetime �̃s�x�=1 /�L
HWHM. Since �̃s does not depend

on the prefactor jx
z in sz, it is a function of 	, �, �s, x, and D.

From dimensional analysis, we see that

�̃s = �sg	,�
 x

Ls
� , �9�

with some dimensionless function g	,� that depends on the
distance d=x /Ls from the boundary in units of the spin dif-
fusion length.

Using Eq. �6�, we evaluate g	,��d� numerically and plot it
in Fig. 3. For example, g1,0�0.43+0.52d within 5% and for
d10. Most importantly, the “apparent” spin relaxation time
�̃s shows a strong spatial dependence, even if the underlying
spin relaxation rate is homogeneous. In particular, this means
that �̃s is roughly four times smaller near the boundary than
several �three to four� spin diffusion lengths away. This is in
agreement with the experiments4,11,23 where a similar factor
was observed.24

III. DISCUSSION

An important question is what happens at the boundary of
a homogeneous sample, namely, if there are spin relaxations
processes due to the boundary. Such processes, on length
scales shorter than Ls, are included here via qs. By measuring
the spatially dependent Hanle curves and by fitting with Eq.
�6� �or by comparing with Fig. 3�, one can extract qs and
therefore gain access to the relaxation at the boundary, even
if it occurs on a much shorter length scale than the spatial
resolution of sz�x�. Finally, for an inhomogeneous sample, a
local probe of the spin lifetime is desirable. While it is now
clear that spin diffusion can make such a measurement dif-
ficult in the steady state, one could instead use a time-
resolved �pump-probe� measurement to determine �s�x�.

Instead of extracting the parameters of Eqs. �1� and �2� by
fitting to Eq. �6�, one can find some parameters more directly
as follows. First, note that for B=0, one can extract the decay
length Ls

z=�D�z from sz�x�. Next, the width of the Hanle
curve contains information about spin relaxation, and we ac-
cess it via the curvature at the origin, c�x�
= ��2sz /�B2� /szB=0. �The normalization of c eliminates ef-
fects of a spatially dependent detection sensitivity on sz.
Also, when fitting experimental data, it is presumably more
accurate to fit the curvature on many data points instead of
taking the discretized derivative.� Since the Hanle curve be-
comes narrower when moving away from the boundary, the
curvature increases and from Eq. �6�, we find

�1

c

�c

�x
�

x=0
=

1

Ls
z + qs, �10�

which does not explicitly depend on 	 or g*. Because Ls
z can

be determined independently, Eq. �10� provides a convenient
way to access the spin relaxation qs at the boundary.

Furthermore, note that at finite distances x, the Hanle
curve can develop “side lobes,” where sz changes sign, see
Fig. 1. This is a well-known effect and such side lobes were
detected electrically in Johnson-Silsbee geometries for a
fixed injector-detector spacing x.25,26 Additionally, in the re-

FIG. 2. �Color online� ��a� and �b�� Spin density sz�x ,�L� near a
boundary of a diffusive system, given by Eq. �6� for �s=�xy =�z and
qs=0. Sufficiently far from the boundary, the Hanle curve develops
side lobes �Refs. 21 and 22� where the spin polarization changes
sign; here, sz is plotted in units of jx

z��s /D. �c� Spins generated at
the boundary diffuse into the sample in the absence of a magnetic
field and eventually become suppressed due to spin relaxation ��L

=0, solid line�, while in a magnetic field ��L=5�s
−1, dashed line�,

spin precession further suppresses spin polarization.

FIG. 3. Apparent spin relaxation time �̃s as function of distance
x from boundary, plotted for �=0 and 	=1 �solid line�, 	=�2
�dashed�, 	=1 /�2 �dotted� and for �=2 and 	=1 �dashed-dotted�.
While details depend on the microscopic parameters �see text�, gen-
erally, the apparent spin lifetime is reduced when considering the
Hanle curves close to the boundary, even if the spin relaxation rate
is position independent.
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gime �xy ��z and for a fixed x, the polarization at finite fields
can have a larger magnitude �but opposite sign� than the
main peak at zero fields, which can be understood as follows.
In the absence of spin precession �main peak�, the spins will
relax rapidly with rate �z

−1. However, the precessing spins
corresponding to the side lobes relax with a lower average
rate and thus contribute with a larger signal, effectively fil-
tering spins that have precessed by an angle of �.

In addition to the extrinsic spin-orbit interaction, leading
to the spin Hall effect considered above, there is also intrin-
sic spin-orbit interaction that couples to the spin as an effec-
tive field b�k�, depending on the wave vector k. In Eq. �1�,
we do not take this field into account explicitly; however, it
does contribute to the spin relaxation rate �s

−1. Also, this field
can lead to additional spin polarization induced by the elec-
tric field—for example, for a two-dimensional system with
Rashba spin-orbit interaction, this polarization is along the x
axis;27–33 however, it is not relevant in our discussion of sz,
since sx does not couple to sz or sy in Eq. �1�. In a naive
model, one can understand this polarization as arising from
the field bdr= �b�k�� averaged over all carriers, which drift in
the electric field with a finite �k�. For Rashba spin-orbit in-
teraction, bdr is in plane and perpendicular to E, i.e., in our
case bdr�B.

In addition to the sx polarization, bdr contributes as a spin
precession term in the Bloch equation. Because it is parallel
to B, its contribution can be absorbed into �L and it leads to
a shifted Hanle curve sz�B� with the maximum moved away
from B=0. Experimentally, the expected shift of the Hanle
curve sz�B� was reported for strained three-dimensional
n-GaAs systems �where a spin-orbit coupling with the same
form as the Rashba term is present34�, while for unstrained
samples one sees that bdr=0 due to the cubic symmetry and
there is no shift.4 Note that this naive model can break down
for more general transport mechanisms,33 which can lead to
spin generation along bdr�B, but this expression vanishes in
our configuration.

Furthermore, for Rashba spin-orbit interaction, there are
additional precession terms around the ŷ axis that arise when

spins diffuse away from the edge.15,35–37 This would induce
oscillations in sz�x� in addition to the one shown in Fig. 1�d�,
and the combined effect can lead to larger oscillation ampli-
tudes. Since the precession length is on the order of Ls in
both cases, strictly speaking, our model �Eq. �1�� does not
apply to a system with Rashba spin-orbit interaction; how-
ever, no such k-linear intrinsic spin-orbit terms are present
for a three-dimensional system with cubic symmetry, which
applies to the experiments of Ref. 4 on unstrained samples.
Finally, for two-dimensional systems, it was argued that the
Rashba spin-orbit interaction can change the magnitude of
extrinsic spin currents38,39 and would thus change the mag-
nitude of the Hanle curves. For these systems, also the im-
portance of the intrinsic spin-orbit interaction on the bound-
ary conditions was studied;17,18 measuring the spatial
dependence of the Hanle curves and using a property analo-
gous to Eq. �10� can be used to test these predictions.

IV. CONCLUSIONS

In conclusion, we have found that in systems where spins
are generated at the boundary, the magnetic field dependence
of the spin polarization �Hanle curve� becomes spatially de-
pendent even if the spin relaxation rate �s

−1 is spatially ho-
mogeneous. This leads to a reduction of the apparent spin
lifetimes �̃s near the edges of a sample exhibiting the spin
Hall effect, as was recently observed experimentally.4 We
have provided an intuitive picture for this effect: Spins de-
tected closer than Ls to the edge were, on average, generated
within a time less than �s and relatively large magnetic fields
would be required to suppress them, corresponding to a
small �̃s. Our description provides a method for extracting
the homogeneous spin relaxation rate and it also allows us to
measure spin relaxation effects at the sample boundary.
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